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Unexploded Ordnance (UXO) is a major threat affecting the lives 
of people in more than 60 countries. This work tests deep neural 
networks to automatically detect UXO in Hyperspectral Images 
(HSI). Initially, we constructed our own dataset of 134 HSI cubes 
divided into three folds: two for training and one for validation. 
U-Net was selected through preliminary experiments as the most 
promising detection method among those compared. Customised 
loss functions were designed for the U-Net, resulting in 3 different 
models. These models were trained and validated in a supervised 
manner on our data. The results obtained are very promising with 
a UXO detection rate of around 70% and an F1 score above 0.8. 

Keywords: 
nexploded ordnance, 
hyperspectral images,  
image segmentation, 
convolutional neural 

networks,  
dataset construction  

 
 



 

 

 
 

DOI 
https://doi.org/ 
10.18690/um.feri.2.2025.7 
 
ISBN 
978-961-286-960-1 

  
 

DETEKTIRANJE NEEKSPLODIRANIH 

UBOJNIH SREDSTEV NA 

HIPERSPEKTRALNIH SLIKAH Z 

UPORABO GLOBOKIH  
NEVRONSKIH MREŽ 

   
 MILAN BAJIĆ,1 BOŽIDAR POTOČNIK2 
 1 Tehničko Veleučilište u Zagrebu, Katedra za IT in računalništvo, Zagreb, Hrvaška 

mbajic@tvz.hr 
2 Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Inštitut 

za računalništvo, Maribor, Slovenija 
bozidar.potocnik@um.si 

  
Ključne besede: 
neeksplodirana ubojna 
sredstva,  
hiperspektralne slike, 
segmentacija slik, 
konvolucijske nevronske 
mreže,  

konstrukcija podatkovne 
zbirke  
 

 Neeksplodirana ubojna sredstva (UXO) so velika grožnja, ki 
ogroža življenja ljudi v več kot 60 državah. To delo preizkuša 
globoke nevronske mreže za samodejno zaznavanje UXO v 
hiperspektralnih slikah (HSI). Na začetku smo izdelali lasten 
nabor podatkov iz 134 kock HSI, razdeljenih v tri dele: dva za 
učenje in en za validacijo. U-Net je bil s predhodnimi poskusi 
izbran kot najbolj obetavna detekcijska metoda med 
primerjanimi. Prilagojene funkcije izgube so bile zasnovane za U-
Net, s čimer smo dobili 3 različne modele. Ti modeli so bili 
naučeni in preizkušeni na nadzorovan način na naših podatkih. 
Dobljeni rezultati so zelo obetavni z uspešnostjo detektiranja 
UXO okoli 70 % in oceno F1 nad 0,8. 
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1 Introduction 
 
Hyperspectral Imaging (HSI) is a camera-based technique that captures a dense 
image series, characterized by its wavelength range and number of channels. The 
Specim IQ camera utilized in this study possesses a spatial resolution of 512x512 
pixels and 204 spectral channels. This camera functions on the principle of an 
integrated hyperspectral push-broom line scanner, with internal processing 
occurring during the acquisition process. The results of this process are calibrated 
reflectance values within the range of 400nm to 1000nm, with a mean spectral 
resolution of 7nm within this range. However, higher FWHM (i.e., full width at half 
maximum) values at higher wavelengths generally result in data that is not useful 
(from 900nm to 1000nm). Hyperspectral images are defined as a set of pixels 
containing spatial dimensions (m rows and n columns) and spectral information (K 
wavelength channels). This is commonly referred to as a three-dimensional 
hyperspectral cube (hypercube), data cube, spectral cube, spectral volume, or data 
volume. Hyperspectral imaging provides valuable insights into the physical and 
chemical properties of analysed materials, with the gathered information including 
geometric and physical characteristics such as size, orientation, shape, texture, and 
colour. A raw hyperspectral image consists of multiple interconnected sub-images, 
with each sub-image representing an object's spatial distribution and intensity at a 
specific wavelength. It is possible to extract an individual spatial image from the 
hypercube at any point within the system's spectral sensitivity range. Consequently, 
a hyperspectral image represented as I(x, y, l) can be interpreted either as a 
standalone spatial image I(x, y) at a given wavelength (l) or as a spectral profile I(l) 
at each pixel (x, y). Each pixel within the hyperspectral image contains a unique 
spectral signature corresponding to its specific location, effectively acting as a 
fingerprint for identifying its composition.   
 
The proposed research is concerned with the detection of explosive objects. It is 
estimated that over sixty countries currently possess remnants of Unexploded 
Ordnance (UXO), (Bajić & Potočnik, 2024). For instance, UXOs from the First 
World War have been unearthed during archaeological excavations and construction 
(National University of Public Service, Hungary & Ember, 2021), (Roberts & 
Williams, 1995). Furthermore, over 100 countries have been affected by explosions 
at ammunition storage sites, resulting in casualties, environmental damage, mass 
displacement, and economic disruption (iMMAP-IHF, Humanitarian Access 
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Response - Monthly Security Incidents Situation Report, November 2018, 2019). It 
is estimated that there have been tens of thousands of accidental explosions at 
ammunition depots (Ammunition Storage Area Explosions – EOD Clearance, 
2021). In contrast to buried UXOs, surface UXOs can be effectively detected with 
hyperspectral imaging (Bajić et al., 2013), (Bajić & Bajić, 2021). International efforts 
to address UXO contamination include initiatives such as the Mine Ban Treaty, 
which aims to eliminate landmines and promote demining activities worldwide. 
Organizations such as the United Nations Mine Action Service (UNMAS) 
collaborate with affected countries to clear contaminated areas and educate on the 
dangers of UXOs. Furthermore, international funding and partnerships have been 
established to support technological advancements and training for more effective 
UXO detection and removal. The presence of explosive remnants that have not 
been removed thus far continues to pose a significant threat. 
 
Deep neural networks have been employed for many years with great success in the 
segmentation and classification of multidimensional data (e.g. images, volumes) or 
for object detection. One such early and extensively deployed neural network is the 
U-Net network (Ronneberger et al., 2015). U-Net is a well-established and 
recognized Convolutional Neural Network (CNN) architecture with a left-side 
contracting phase (i.e., encoder), a bottleneck phase, and an expansive right path 
(i.e., decoder). This configuration, in conjunction with skip connections from the 
encoder to the corresponding decoder layer, facilitates the preservation of both 
spatial and spectral characteristics. U-Net was originally developed for the 
classification and segmentation of biomedical images. Biomedical and hyperspectral 
imaging are similar in that both rely on multi-channel imaging, which is why it is so 
difficult to collect large datasets in either area. U-Net was designed for data with 
typically 3 channels, whereas hyperspectral images typically have more than 100 
channels. The integration of U-Net architectures with HSI has demonstrated 
efficacy in detecting UXOs. According to (Tuohy et al., 2023), UAV-based HSI can 
effectively detect surface-level Explosive Remnants of War (ERW), suggesting that 
deep learning models like U-Net could enhance detection accuracy. This study 
combined U-Net models with HSI data to detect surficial explosive ordnance using 
UAV-mounted HSI systems. Authors employed a U-Net to detect artillery and 
rocket craters in Ukraine, achieving an 89% accuracy rate compared to human 
marking, thereby demonstrating the model's ability to detect UXO. When applied to 
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hyperspectral data, U-Net-based segmentation offers a more efficient and safer 
alternative to conventional methods for UXO and ERW detection. 
 
In this study, a computational method is proposed for the identification of UXOs 
through the utilization of a U-Net neural network in conjunction with HSI data. The 
subsequent sections will provide a detailed exposition of the acquisition of the 
dataset, its annotation, and the division of the data into training and testing sets. 
Section 3 will provide a concise overview of the computational methods employed 
and the salient characteristics of the convolutional networks utilized in this study. 
The ensuing section, i.e. Section 4, will present the experiments, implementation 
details, metrics used, details about model training and hyperparameters' fine-tuning. 
The results section will present the quantitative and qualitative results obtained. 
Finally, the work is concluded with a discussion of potential future directions for 
research. 
 
2 Dataset 
 
The dataset was created using an experimental Graeco Latin square design (Guthrie, 
2020). This was done to minimise the specific spatial sensor position, the influence 
of light change, and the influence of the surface environment. The surface is 
characterised by gravel, grass, grassland, grass in sunlight, and bush leaves in shadow. 
 

 
 

Figure 1: Four UXO, plastic pressure plate, and calibration card 
Source: Own. 
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Four different types of UXO were identified in this study: a mortar mine (marked 
with an orange arrow in Figure 1), an anti-personnel mine (green arrow), a hand 
grenade (white arrow), a large bullet (purple arrow) and a plastic pressure plate used 
to activate explosive ordnance (blue arrow). It is important to note that a white 
reference card is incorporated into all images, as it is utilised for post-recording 
calibration in the camera to calculate reflectance values from digital numbers. The 
approximate image acquisition time ranges between 60 and 120 seconds, depending 
on exposure and integration settings. The dataset under consideration consists of 
134 hyperspectral cubes, with the presence of one to five of the aforementioned 
objects in every HSI image.  
 

 
 

Figure 2: Acquisition of dataset 
Source: Own. 

 
The objects were supplied by HCR-CTRO, an educational and research company 
specialising in land mine clearance education and land mine clearance technology 
certification. Each of the five objects is present in at least 100 HSI images. The 
recorded images (see Figure 2) were subjected to a visual control process following 
the calibration process. In instances where the data proved inadequate, the image 
capture was repeated with the same position and using the same exposure and 
integration values. Each cube is stored in the ENVI HDR + data file format. The 
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data type is 4, interleave BIL, while channels 70, 53 and 19 were utilised for the 
purposes of visualization and annotation of RGB images. 
 
The images in the database were annotated manually, using visualised RGB images. 
Each object was denoted by polygons. It was ensured that the same object (i.e., the 
target) was assigned the same class label in all HSI images. We used the Supervisely 
platform for annotation. Initial annotations were automatically determined using the 
'segment anything' option, which we visually inspected and manually corrected. The 
resulting mask was used for all wavelengths in the HSI cube. 
 
The dataset under consideration thus contains 134 HSI images. The data was 
randomly divided into three parts (i.e., subgroups, folds) to enable 3-fold validation. 
The first two folds comprise 45 images each, while the third fold consists of 44 
images. The division of the dataset into subgroups is illustrated in Table 1 for each 
fold. 
 

Table 1: Dataset division aimed for 3-fold cross validation. The numerical values represent 
the image ID within the database. 

 
 Image ID 

Fold 1 
180, 181, 182, 184, 186, 187, 189, 196, 197, 201, 202, 203, 204, 206, 208, 215, 221, 225, 
241, 244, 249, 250, 252, 256, 258, 259, 266, 271, 273, 275, 276, 281, 284, 285, 286, 288, 
295, 297, 298, 301, 304, 305, 307, 309, 310 

Fold 2 
178, 179, 183, 190, 195, 198, 211, 212, 214, 219, 220, 222, 223, 226, 227, 232, 237, 238, 
239, 240, 243, 246, 251, 254, 255, 260, 265, 268, 269, 270, 272, 274, 280, 282, 283, 287, 
291, 293, 296, 299, 300, 302, 311, 312, 313 

Fold 3 
185, 188, 191, 193, 194, 199, 200, 205, 207, 210, 213, 216, 217, 218, 224, 228, 229, 230, 
231, 233, 234, 235, 236, 242, 245, 247, 248, 253, 257, 261, 262, 263, 264, 267, 277, 278, 
279, 289, 290, 292, 294, 303, 306, 308 

 
It should be noted that the file size of each HSI image is 209 MB, whereas the mask 
(i.e., annotations) is 1.36 KB. 
 
3 Computational methods 
 
In the preliminary phase of this research, experimentation was conducted with 
various CNN architectures incorporating distinct attention mechanisms, utilising a 
binary cross entropy loss function and an Adam optimiser. The following 
architectures were assessed: U-Net and U-Net with attention, DeepLabV3+ and 
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FCN. The aim was to identify the most promising architecture for further 
experimentation. 
 
U-Net is an exemplary, well-established convolutional neural network that is 
founded on an encoder-decoder architecture (Ronneberger et al., 2015). Attention 
U-Net is a modification of U-Net that uses attention gates by upsampling operation 
at each decoder layer. In skip connections, the gates are used to highlight the 
important regions and, thus, allowing the network to focus on the more relevant 
features (Yan et al., 2018). DeepLabV3+ employs Atrous Spatial Pyramid Pooling 
(ASPP), a technique that captures features at multiple scales. This approach 
facilitates the model's comprehension of the context. Atrous convolution, a 
pioneering innovation, introduces gaps between the values in a convolutional kernel, 
thereby expanding the filter's capacity to encompass larger areas of the input image 
without increasing the number of parameters (Chen et al., 2018). The replacement 
of fully connected layers with convolutional layers in a Fully Convolutional Network 
(FCN) (Long et al., 2015) results in a network capable of accommodating inputs of 
any size. FCN incorporates skip connections for feature map combination; however, 
these are generally simpler and less structured in comparison to U-Net.  
 
Table 2 summarizes the trainable parameters and number of layers for the four 
tested models.  
 

Table 2: Four tested CNNs: Number of layers and trainable parameters 
 

 Model Trainable 
parameters 

Number of 
layers 

1. FCN 33.311.928 156 
2. U-Net 34.590.913 81 
3. Attention U-Net 31.977.317 97 
4. DeepLabV3+ 10.689.537 434 

 
All tested models were downloaded from the Keras and Pytorch GitHub, 
respectively. The architectures of the models were not modified, only the input and 
output layers were adapted to our problem (the expected input size was 
512x512x102 and the size of the predicted binary mask was 512x512x1). The Binary 
Cross Entropy (BCE) Loss function has been utilized. All experiments were 
performed on an optimised Google Colab pay-per-use environment, in combination 
with Google Drive for large data storage. The GPU used was an A8 with 40 GB of 
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RAM, with 81 GB of system RAM.  The code was written in Python, and the models 
were saved in the h5 format. 
 
In preliminary tests, the models were evaluated on only 5 HSI test images, the rest 
were used for training. Table 3 summarises the metrics obtained, calculated at the 
pixel level. It can be seen that the most balanced results were obtained using the 
classic U-Net, and this model was, therefore, selected for all further experiments.  In 
the sequel of this research, we thus experimented with the original U-Net 
architecture, focusing on the design of a custom loss function. 
 

Table 3: Results of a preliminary model selection experiment. The best model is in bold. 
 

Model Dice IoU Precision Recall 
Attention U-Net 0,639 0,523 0,710 0,640 
DeepLabv3+ 0,663 0,519 0,851 0,568 
U-Net 0,764 0,648 0,917 0,689 
FCN 0,992 0,008 0,875 0,632 

 
4 Results 
 
This section describes the experimental design and implementation details, followed 
by a presentation of the quantitative and qualitative results obtained. 
 
4.1 Experiments and implementation details 
 
We dealt with UXO detection from HSI images in this research. All UXOs were 
treated as a common class (i.e., we did not distinguish between different types of 
UXOs). We therefore dealt with the so-called binary segmentation problem: pixel 
belongs to UXOs or pixel is part of the background. The computational method 
used was the U-Net neural network (see previous section). Three different 
modifications of the U-Net are proposed in this work (models M1 to M3). All of 
these models are based on the same 20-layer architecture, they just use different loss 
functions. 
 
In this research, we therefore focused on investigating the effect of the loss function 
on segmentation effectiveness. A custom loss function was designed by combining 
the following loss functions in the form of a linear combination: Binary Cross 
Entropy Loss, Dice Loss, Focal Loss, Tversky Loss and Edge Loss. Edge loss is also 
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a custom loss function that we use to estimate areas near the edges of objects where 
there should be differences in the spectral signature. The weights of the loss 
functions have been chosen so that their sum equals 1. All three models had the 
same weights for BCE loss (set to 0.25), Dice loss (0.4), and Focal loss (0.1). Model 
M1 had the weights for the Tversky loss set to 0.1 (with alpha=0.2) and the Edge 
loss set to 0.15, model M2 had these weights set to 0.15 (Tversky loss) and 0.1 (Edge 
loss), while model M3 used the weight of 0.1 (with alpha=0.05) for the Tversky loss 
and 0.15 for the Edge loss. 
 
Let's give some more details about the training and evaluation of the models. The 
implementation of the methods and the hardware used are practically the same as 
those presented for the preliminary tests (see previous section). No regularisation or 
normalisation was used in the training. The models were trained for 200 epochs 
using the Adam optimiser, with an initial adaptive learning rate of 0.00001 and cosine 
decay. Our own dataset was used for training. A full 3-fold validation was not 
performed in our study due to time constraints. All three models were trained only 
once, with folds 1 and 2, and tested on fold 3. The results obtained in this way are 
reported in the sequel. 
 
We evaluated the effectiveness of the methods using established metrics such as 
Precision, Recall, and F1 score. The methods were evaluated both in terms of their 
effectiveness in detecting UXO (we used a threshold of 0.5 for the overlap between 
prediction and ground truth) and in terms of how well each UXO was detected 
(undetected UXO were of course excluded from these statistics). In both cases, we 
will present the results in two ways: i) per-dataset statistics and ii) per-image statistics. 
In the first case, we will calculate the statistics for the test set as a whole (i.e. as if all 
the test images were combined into one large common image). In the second case, 
we calculate the statistics for the test set as the average of the statistics calculated for 
the individual images in the test set. 
 
4.2 Quantitative and qualitative results 
 
Firstly, the effectiveness of the UXO detection is indicated by the so-called 'per-
dataset' statistics. There was a total of 151 UXOs (i.e., ground truth regions) in the 
entire test set, while methods M1 to M3 predicted between 211 and 295 regions, 
with matches between 99 and 110 regions. Table 4 summarises these statistics for all 
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three methods. The M3 model proved to be the best, with the highest F1 score and 
precision. 
 

Table 4: Effectiveness of UXO detection: ‘per-dataset’ statistics. Best results are in bold. 
 

Model F1 score Precision Recall 
M1 0,488 0,381 0,682 
M2 0,493 0,373 0,728 
M3 0,547 0,469 0,656 

 
We also provide the effectiveness of UXO detection in the 'per-image' way, where 
the calculated metrics for each image are averaged over the entire test set. Such 
calculated metrics are shown in Table 5 (mean and standard deviation). Again, the 
M3 method proves to be the best. However, it should be noted that method M1 did 
not segment any UXO in 2 images. Methods M2 and M3 did not detect any UXO 
in 4 images. Table 5 also takes into account undetected UXO. 
 

Table 5: Effectiveness of UXO detection: ‘per-image’ statistics. Best results are in bold. 
 

Model F1 score Precision Recall 
M1 0.549 ± 0.305 0.515 ± 0.324 0.655 ± 0.313 
M2 0.556 ± 0.289 0.508 ± 0.321 0.711 ± 0.265 
M3 0.583 ± 0.285 0.582 ± 0.336 0.634 ± 0.279 

 
We also wanted to answer the following question: If the UXO was detected, how 
well was it detected? Again, we calculated statistics using both ways, but since the 
differences are extremely small, we present only the statistics calculated using the 
'per-dataset' way. Table 6 shows these results (mean and standard deviation). Even 
according to these statistics, the M3 method was the best performing method. 
 

Table 6: Quality of UXO detection: ‘per-dataset’ statistics. Best results are in bold. 
 

Model F1 score Precision Recall 
M1 0.817 ± 0.108 0.853 ± 0.140 0.813 ± 0.145 
M2 0,815 ± 0.111 0,816 ± 0.144 0,850 ± 0.152 
M3 0,832 ± 0.009 0,882 ± 0.117 0,813 ± 0.142 

 
Finally, we show an example of successful and less successful UXO detection using 
the most promising model, M3. An example of successful detection is shown in 
Figure 3. The quality of UXO detection was extremely high (average F1 score was 
0.945) for this example image. 
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Figure 3: Example of successful UXO detection with the M3 model: original RGB image 
(left) and model prediction overlaid on the RGB image (right). 

Source: Own. 
 
Figure 4 shows an example of unsuccessful detection with the M3 model. For this 
example image, the quality of the detected UXO was very low (average F1 score was 
0.550), with two UXO not detected at all. 

 

    
 

Figure 4: Example of unsuccessful UXO detection with the M3 model: original RGB image 
(left) and model prediction overlaid on the RGB image (right). 

Source: Own. 
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5 Conclusion 
 
Our preliminary research has confirmed the feasibility of UXO detection from HSI 
images using deep learning. With a detection rate between 60 and 70% and the F1 
score above 0.8, the approach is certainly encouraging, but considering all other 
metrics, it is still not efficient enough for wider applicability. The main problem lies 
in the structure of UXO, which consists of different parts made of different 
materials and colours. All of this results in different spectral signatures, which were 
not properly accounted for in the CNN. 
 
In further research, we will focus on improving our computational model, where we 
will try to account for the diversity of materials in the method. We will also 
investigate the implementation of a multi-class approach (i.e., including the UXO 
class). We will perform a full 3-fold cross-validation by testing the models. 
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